Race, Learning Attitudes and Achievement: An Inequitable Triad

James Martinez
October 29, 2015
James Martinez, Ed.D.
CSU Channel Islands

2015 California STEM Symposium
Latino Struggles Dramatization

Courtesy of Novelas Educativas and the National Council for Community and Education Partnerships (2011)
https://www.youtube.com/v/N9lC7aczAaE?version=3&start=169&end=280&autoplay=1&hl=en_US&rel=0
The Problem

(Cohn and Passel, 2013; President’s Council of Advisors on Science and Technology, 2012)

“(Future STEM students will need a) deeper understanding of academic content, the ability to apply knowledge to new problems, and a set of strategies to enable students to 'learn how to learn', be creative, and take control of their own learning” (Stewart, 2012)
As of June of 2012 . . .

- 19% of Latinos 26 or older have college degrees, compared to 40% of all adult US citizens
- The U.S. is ranked 12th in the world in percent of adults with college degrees
- If 60% of U.S. Latinos obtain college degrees, the net tax revenue increase is estimated to increase $3,000,000,000/year

1) To what degree do psychosocial variables that affect mathematics achievement differ between Hispanic and non-Hispanic high school students?

2) How well do psychosocial attitudes related to mathematics and race predict academic achievement for high school sophomores?
External Factors – *Out of Student Control*
- English language acquisition (Gasbarra & Johnson, 2008)
- Inadequate academic instruction (Kawell, 2008)
- Inequitable/rigid course assignment policies (Allen, 2002)
- Limited parent involvement (Greer, 2009)
- Low family socioeconomic income (Gándara, 2009)
- Contrasting sociocultural identity (Crisp, 2012)

Internal Factors – *In Student Control*
Epistemology – General
“the endeavor to determine the indubitable foundations of our claims to knowledge” (Cooper, D.E., 1999)

Marcia Baxter–Magolda (Miami University)
• Model of Epistemological Reflection (1992)
 • Ways of knowing are “socially constructed”
• Theory of Self–Authorship (2008)
 • Epistemological development was intertwined with (subject’s) development of their sense of self and relationships with others
Epistemological Framework

- epistemology
- theoretical perspective
- methodology
- methods

(Crotty, 1998)
“A quantitative measure of (epistemological data) has the potential to address a number of theoretical questions emerging from the research about self-authorship” (Creamer, Baxter Magolda and Yu, 2008)

Instrument: Education Longitudinal Study of 2002 (NCES)
- 45-minute, self-administered survey
 - demographic characteristics
 - high school experiences
 - work experiences
 - future plans

Participants: Stratified, national probability sample
- 16,197 students from 1,015 public and private high schools

Timeframe
- 2002: sophomores
- 2004: seniors
- 2005: transcripts obtained
- 2006: 2 years out
- 2012: 8 years out
Statistical Analyses

- Correlation
- T-Tests
- Chi-Square
- ANOVA
- Hierarchical Linear Modeling
- Regression
Results of Data Analysis (Correlation) – all participants

Table 1.6

Correlation Summary Table Comparing Math Attitude Variables (N = 11294)

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gets totally absorbed in math</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.49</td>
<td>.808</td>
</tr>
<tr>
<td>2. Thinks math is fun</td>
<td>.501*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.79</td>
<td>.840</td>
</tr>
<tr>
<td>3. Mathematics is important</td>
<td>.456*</td>
<td>.682*</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.51</td>
<td>.890</td>
</tr>
<tr>
<td>4. People can be good at math</td>
<td>.236*</td>
<td>.275*</td>
<td>.308*</td>
<td>--</td>
<td>--</td>
<td>2.04</td>
<td>.690</td>
</tr>
<tr>
<td>5. Have to be born with math</td>
<td>-.013</td>
<td>-.027*</td>
<td>-.062*</td>
<td>-.305*</td>
<td>--</td>
<td>2.78</td>
<td>.826</td>
</tr>
</tbody>
</table>

*p < .05 **p < .01

<table>
<thead>
<tr>
<th>Correlation Coefficient Value/Range</th>
<th>Relative Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perfect</td>
</tr>
<tr>
<td>0.7-0.9</td>
<td>Strong</td>
</tr>
<tr>
<td>0.4-0.6</td>
<td>Moderate</td>
</tr>
<tr>
<td>0.1-0.3</td>
<td>Weak</td>
</tr>
<tr>
<td>0</td>
<td>Zero</td>
</tr>
</tbody>
</table>
Results of Data Analysis (t-tests)

Table 1.1a

Comparison of Survey Responses of Hispanic and non-Hispanic Students Regarding Attitudes about Mathematics and Personal Mathematics Efficacy ($n = 1540$ Hispanic participants and $n = 10,134$ non-Hispanic participants)

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Most people can learn to be good at math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>1.76</td>
<td>1.521</td>
<td>-2.787</td>
<td>11672</td>
<td>.005</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>1.88</td>
<td>1.539</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have to be born with ability to be good at math</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>2.61</td>
<td>1.837</td>
<td>1.055</td>
<td>11672</td>
<td>.303</td>
<td>.04</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>2.55</td>
<td>1.780</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thinks math is fun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>2.70</td>
<td>.824</td>
<td>-4.472</td>
<td>11672</td>
<td>.000</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>2.80</td>
<td>.842</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics is important</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>2.29</td>
<td>1.512</td>
<td>-3.945</td>
<td>11672</td>
<td>.000</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>2.44</td>
<td>1.357</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results of Data Analysis (t-tests)

Table 1.1b

Comparison of Survey Responses of Hispanic and non-Hispanic Students Regarding Attitudes about Mathematics and Personal Mathematics Self-Efficacy (n = 1540 Hispanic participants and n = 10,134 non-Hispanic participants)

<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can do excellent job on math tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>1.96</td>
<td>2.479</td>
<td>-3.606</td>
<td>11672</td>
<td>.001</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>2.18</td>
<td>2.250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can understand difficult math texts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>1.74</td>
<td>2.592</td>
<td>-3.392</td>
<td>11672</td>
<td>.001</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>1.96</td>
<td>2.322</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can understand difficult math class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>1.48</td>
<td>3.290</td>
<td>-2.709</td>
<td>11672</td>
<td>.007</td>
<td>-0.1</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>1.71</td>
<td>3.026</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can do excellent job on math assignments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanics</td>
<td>1.37</td>
<td>3.661</td>
<td>-2.950</td>
<td>11672</td>
<td>.003</td>
<td>-0.2</td>
</tr>
<tr>
<td>non-Hispanics</td>
<td>1.65</td>
<td>3.375</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results of Data Analysis (Chi-Square Analyses)

Student Highest Math Course Taken versus Race

\[\chi^2 = 463.43, \text{ df } = 12, \text{ N } = 12,964, p = .000 \]

Interpretation: Students of different races are being differentially prepared in mathematics.
Results of Data Analysis (ANOVA)

- The mean value for highest level of mathematics course taken for at least one semester
- Based on:
 - 1 = Pre-algebra, general or consumer math
 - 2 = Algebra I
 - 3 = Geometry
 - 4 = Algebra II
 - 5 = Trigonometry, pre-calculus, or calculus
- 5.44 for Asians
- 5.16 for Whites
- 4.95 for African Americans
- 4.81 for Hispanics

- \(F(3, 12960) = 109.23, \ p = .000 \)
- Statistically significant!
The mean value for transcript grades for sophomore participants taking Geometry is:
- 6.91 for Hispanics
- 6.62 for African Americans
- 6.54 for Whites
- 6.32 for Asians

\[F(3, 4588) = 5.588, \ p = .001 \]

Interpretation: when Hispanic students are “on track”, they achieve at higher levels than their non–Hispanic classmates.
Results of Data Analysis (Hierarchical Linear Modeling)

Example

Identifying as an Latino (Hispanic) became less and less a contributing factor when also considering math attitudes, but became more a factor when including work habits and forecasting ones educational attainment were considered. As these additive factors compiled, they became less statistically significant.

Factors That Contribute to Highest Mathematics Course Completed (N=8972)

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable entering</th>
<th>Block 1 – Demographic Characteristics</th>
<th>Beta at Step*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asian</td>
<td>1.00</td>
<td>.067</td>
</tr>
<tr>
<td>2</td>
<td>African Amer.</td>
<td>1.00</td>
<td>.021*</td>
</tr>
<tr>
<td>3</td>
<td>Hispanic</td>
<td>1.00</td>
<td>.023*</td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td>1.00</td>
<td>.070</td>
</tr>
<tr>
<td>5</td>
<td>Gender</td>
<td>1.00</td>
<td>.008*</td>
</tr>
<tr>
<td>6</td>
<td>Parent educ.</td>
<td>1.00</td>
<td>.015*</td>
</tr>
<tr>
<td>7</td>
<td>SES</td>
<td>1.00</td>
<td>.146</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable entering</th>
<th>Block 2 – Math Attitudes</th>
<th>Beta at Step*</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Gets absorbed</td>
<td>1.00</td>
<td>.031**</td>
</tr>
<tr>
<td>9</td>
<td>Math is fun</td>
<td>1.00</td>
<td>-.043*</td>
</tr>
<tr>
<td>10</td>
<td>Math is import.</td>
<td>1.00</td>
<td>-.058**</td>
</tr>
<tr>
<td>11</td>
<td>People learn math</td>
<td>1.00</td>
<td>.014*</td>
</tr>
<tr>
<td>12</td>
<td>Born with math</td>
<td>1.00</td>
<td>.014*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable entering</th>
<th>Block 3 – Work Habits</th>
<th>Beta at Step*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Screentime</td>
<td>1.00</td>
<td>-.043**</td>
</tr>
<tr>
<td>14</td>
<td>Homework time</td>
<td>1.00</td>
<td>.049**</td>
</tr>
<tr>
<td>15</td>
<td>Employment hrs.</td>
<td>1.00</td>
<td>-.068**</td>
</tr>
<tr>
<td>16</td>
<td>School activities</td>
<td>1.00</td>
<td>.079**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Variable entering</th>
<th>Block 4 – Education Forecast</th>
<th>Beta at Step*</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Est. educ. Attain.</td>
<td>1.00</td>
<td>.187**</td>
</tr>
</tbody>
</table>
Results of Data Analysis (Regression)

- Highest mathematics course taken = 2.428 (Constant)
 - + .397 Asian
 - + .147 Black
 - + .219 Hispanic
 - + .427 White
 - - .238 Gender
 - - .006 ParentEdu
 - + .310 SES
 - + .012 Absorbed
 - - .072 MathFun
 - - .091 MathImportant
 - + .053 PeopleLearn
 - + .010 BornWMath
 - - .030 Screentime
 - + .011 Homework
 - - .084 Employment
 - + .112 Activities
 - + .388 EducAttain

For example, as SES is increased by one unit, a sophomore's highest mathematics course completed for at least one semester increases by 0.310, holding everything else constant.

\[F(17, 8972) = 46.761, \quad p < .000, \quad \text{adjusted } R^2 = .08. \]

Statistically significant!

(Socioeconomic status combines mother’s education, father’s education, mother’s occupation, father’s occupation, and family income)
Epistemological Self-Authorship – “the capacity to take ownership of (student’s) own internal authority” (Kegan, 1994; Baxter-Magolda, 2004)

“Theoreticians have defined Latino/a reality using an epistemology created out of the experience of Whites . . . as if such an epistemology wasn’t based on living experiences” (Hidalgo, 2005)
Math attitudes are important, but not everything (race, SES, forecasting *as well as* instruction, curriculum, materials, environment, etc.)

Ameliorative Considerations
- Mentor/Mentee Relationships – Forecasting
- Summer instruction for underrepresented minorities to advance tracks in mathematics
 (The Jaime Escalante Math Program, 1990)

The Effects of Tracking
- How do we know if URMs have reached their full potential in math given a reduced set of courses?
Suggestions for Further Studies

- Longitudinal comparisons with the same students as they matured in age (e.g. how many students changed their minds about “math being fun”) based on ethnicity/race, SES, family composition, parent educational attainment, etc.
- Comparisons of student “math attitudes” to those of their parents, teachers, administrators and counselors
Thank You!

- Any Questions?
Sample Characteristics: Gender

- Male: 7,653
- Female: 7,717
Sample Characteristics: Regions

Northeast (19%)
- Rural: 416
- Suburban: 1,651
- Urban: 899

Midwest (25%)
- Rural: 834
- Suburban: 1,895
- Urban: 1,302

South (37%)
- Rural: 1,385
- Suburban: 2,529
- Urban: 1,967

West (20%)
- Rural: 312
- Suburban: 1,689
- Urban: 1,318
Data Characteristics: School Types

* Source: NCES (http://nces.ed.gov/programs/digest/d12/tables/dt12_005.asp); Total Numbers/10
Characteristics: Race/Ethnicity

- Nonrespondent (4%): 648
- Survey legitimate skip (2%): 305
- White, non-Hispanic (54%): 8,682
- More than one race (5%): 735
- Hispanic, race specified (8%): 1,221
- Hispanic, no race specified (6%): 996
- Black or African American (12%): 2,020
- Asian, Hawaii/Pac. Islander (9%): 1,460
- Amer. Indian/Alaska Native (1%): 130
- Survey legitimate skip (2%): 305
Previously *qualitative* was used for studies with epistemological (self–authorship) theoretical framework

“relate your approach to your personal understanding and training” (Creswell, 2012, p. 20)
Immersion

http://www.snagfilms.com/films/title/immersion#